Models and algorithms for three-stage two-dimensional bin packing

نویسندگان

  • Jakob Puchinger
  • Günther R. Raidl
چکیده

We consider the three-stage two-dimensional bin packing problem (2BP) which occurs in real-world applications such as glass, paper, or steel cutting. We present new integer linear programming formulations: Models for a restricted version and the original version of the problem are developed. Both involve polynomial numbers of variables and constraints only and effectively avoid symmetries. Those models are solved using CPLEX. Furthermore, a branch-and-price (B&P) algorithm is presented for a set covering formulation of the unrestricted problem. We consider stabilizing the column generation process of the B&P algorithm using dual-optimal inequalities. Fast column generation is performed by applying a hierarchy of four methods: (a) a fast greedy heuristic, (b) an evolutionary algorithm, (c) solving a restricted form of the pricing problem using CPLEX, and finally (d) solving the complete pricing problem using CPLEX. Computational experiments on standard benchmark instances document the benefits of the new approaches: The restricted version of the ILP model can be used for quickly obtaining nearly optimal solutions. The unrestricted version is computationally more expensive. Column generation provides a strong lower bound for 3-stage 2BP. The combination of all four pricing algorithms and column generation stabilization in the proposed B&P framework yields the best results in terms of the average objective value, the average run-time, and the number of instances solved to proven optimality. 1 This work is supported by the Austrian Science Fund (FWF) under grant P16263-N04. Preprint submitted to Elsevier Science 30 September 2004

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending Two-Dimensional Bin Packing Problem: Consideration of Priority for Items

In this paper a two-dimensional non-oriented guillotine bin packing problem is studied when items have different priorities. Our objective is to maximize the total profit which is total revenues minus costs of used bins and wasted area. A genetic algorithm is developed to solve this problem where a new coding scheme is introduced. To evaluate the performance of the proposed GA, first an upper b...

متن کامل

A Comparative Study of Exact Algorithms for the Two Dimensional Strip Packing Problem

In this paper we consider a two dimensional strip packing problem. The problem consists of packing a set of rectangular items in one strip of width W and infinite height. They must be packed without overlapping, parallel to the edge of the strip and we assume that the items are oriented, i.e. they cannot be rotated. To solve this problem, we use three exact methods: a branch and bound method, a...

متن کامل

 Abstract: Packing rectangular shapes into a rectangular space is one of the most important discussions on Cutting & Packing problems (C;P) such as: cutting problem, bin-packing problem and distributor's pallet loading problem, etc. Assume a set of rectangular pieces with specific lengths, widths and utility values. Also assume a rectangular packing space with specific width and length. The obj...

متن کامل

Construction heuristics for two-dimensional irregular shape bin packing with guillotine constraints

The paper examines a new problem in the irregular packing literature that has existed in industry for decades; two-dimensional irregular (convex) bin packing with guillotine constraints. Due to the cutting process of certain materials, cuts are restricted to extend from one edge of the stock-sheet to another, called guillotine cutting. This constraint is common place in glass cutting and is an ...

متن کامل

Two-stage two-dimensional guillotine cutting problems with usable leftovers∗

In this study we are concerned with the non-exact two-stage two-dimensional guillotine cutting problem considering usable leftovers, in which stock plates remainders of the cutting patterns (non-used material or trim loss) can be used in the future, if they are large enough to fulfill future demands of items (ordered smaller plates). This cutting problem can be characterized as a residual bin-p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 183  شماره 

صفحات  -

تاریخ انتشار 2007